Geometric k-nearest neighbor estimation of entropy and mutual information

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric k-nearest neighbor estimation of entropy and mutual information

Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for a large sample size. These methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induc...

متن کامل

Estimation of Renyi Entropy and Mutual Information Based on Generalized Nearest-Neighbor Graphs

We present simple and computationally efficient nonparametric estimators of Rényi entropy and mutual information based on an i.i.d. sample drawn from an unknown, absolutely continuous distribution over R. The estimators are calculated as the sum of p-th powers of the Euclidean lengths of the edges of the ‘generalized nearest-neighbor’ graph of the sample and the empirical copula of the sample r...

متن کامل

k-Nearest Neighbor Based Consistent Entropy Estimation for Hyperspherical Distributions

A consistent entropy estimator for hyperspherical data is proposed based on the k-nearest neighbor (knn) approach. The asymptotic unbiasedness and consistency of the estimator are proved. Moreover, cross entropy and Kullback-Leibler (KL) divergence estimators are also discussed. Simulation studies are conducted to assess the performance of the estimators for models including uniform and von Mis...

متن کامل

Mutual Information Estimation in Higher Dimensions: A Speed-Up of a k -Nearest Neighbor Based Estimator

We focus on the recently introduced nearest neighbor based entropy estimator from Kraskov, Stögbauer and Grassberger (KSG) [10], the nearest neighbor search of which is performed by the so called box assisted algorithm [7]. We compare the performance of KSG with respect to three spatial indexing methods: box-assisted, k-D trie and projection method, on a problem of mutual information estimation...

متن کامل

Bayesian Kernel and Mutual $k$-Nearest Neighbor Regression

We propose Bayesian extensions of two nonparametric regression methods which are kernel and mutual k-nearest neighbor regression methods. Derived based on Gaussian process models for regression, the extensions provide distributions for target value estimates and the framework to select the hyperparameters. It is shown that both the proposed methods asymptotically converge to kernel and mutual k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos: An Interdisciplinary Journal of Nonlinear Science

سال: 2018

ISSN: 1054-1500,1089-7682

DOI: 10.1063/1.5011683